
Journal of Statistical Physics, Vol. 60, Nos. 5/6, 1990 

Collective Modes in a One-Dimensional 
Nonuniform Fluid Model 

S. Fesjian 1'2 and J. K. Percus 2'3 

Received February 15, 1990 

A one-dimensional fluid with short-range repulsive interaction and one period 
of cosinusoidal attraction in a periodic container is transformed to a two-mode 
format. The system has both high-temperature single-phase regions and low- 
temperature two-phase regions with a very broad spatial interface that can be 
stabilized by a weak external field. The case of vanishing external field brings 
out properties of the mode amplitude dependence which one expects to extend 
to more complex systems. 
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Kac-Siegert transformation. 

1. I N T R O D U C T I O N  

The existence of macroscopic modes supplies much of the interest--and 
much of the diffficulty--in the analysis of microscopically defined many- 
particle systems. To the extent that they serve as perturbations of local 
properties, they fall under the rubric of hydrodynamic excitations, but 
naming them does not trivialize their treatment. Perhaps the cleanest physi- 
cal context is that of thermally excited motion of the interface between 
defined fluids, basically a geometric object, and here it is not difficult to set 
up a phenomenological description. However, the task of producing it as 
a natural consequence of a microscopic analysis remains unfulfilled. 

The special case in which the fluids in question are two phases of a 
single species is of obvious interest and importance, the autonomous inter- 
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facial motions then being referred to as capillary waves. If one wants to 
establish control over the analytic structure of such a system, the first situa- 
tion to be treated must surely be that of thermal equilibrium. There have 
of course been numerous studies along these lines. The general picture that 
emerged a long time ago (1~ is that one can imagine an intrinsic interface, 
due to spontaneously broken translational symmetry of the uniform fluid, 
dynamically distorted on a scale which is determined by any constraining 
fields--gravitation, container, etc.--but which is large in comparison with 
interracial thickness. The infinite-time average that defines thermal equi- 
librium then results in an extensive softening of the interracial profile and 
an associated softening of the infinite-range transverse correlations that an 
actual plane interface would have. However, at a more detailed level, the 
internal flows associated with interface motion are not reliably known, (2~ so 
that this picture does not provide precise quantitative accuracy. 

From the point of view of theoretical analysis, a complex system is 
most effectively treated by providing a reference system or model which 
reproduces what are regarded as dominant characteristics, together with a 
well-defined perturbation method extending it to the system under scrutiny. 
One such model which has been suggested for capillary wave phenomena 
proceeds via effective replacement of particle coordinates by the potential 
field they create--the Kac-Siegert transformation. (3) The effective energy in 
the new configuration space is then expanded to second order about its 
minimum, leading to independent hydrodynamic excitations. (4) Higher 
order nonlinearity, mode coupling, etc., are thus neglected in this small- 
amplitude model, which, however, can in principle be corrected perturba- 
tionaUy. 

When a two-phase system is considered in the grand ensemble, 
without which the formalism becomes extremely cumbersome, or even with 
periodic boundary conditions, the interface location is arbitrary in the 
absence of an external field, leading to a uniform density--the result of very 
large interracial movements which are coextensive with the interracial dis- 
tortions. As an aid to developing suitable machinery to deal with very large 
fluctuations, we study in this paper a drastically oversimplified one-dimen- 
sional model fluid. Here, the particles in the fluid are coupled by very long- 
range cosinusoidal interaction, and one can therefore incite a phase 
transition by the van der Waals-Kac-Uhlenbeck (s) mechanism. The two 
phases have a very broad interface, which can be stabilized by a weak field, 
and whose fluctuations mimic those of capillary waves normal to an inter- 
face. We analyze this system--essentially exactly--from a point of view in 
direct analogy with the Kac-Siegert transformation, and conclude by 
suggesting how spatial fluctuations large in comparison with intrinsic 
spatial scale are to be managed in more complex situations. 
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2. BASIC FORMULATION 

We consider a one-dimensional model of an interacting many-particle 
system with interaction potential given by 

1A 
~(xl,..., xN) = ~0(xl,..., X u ) - - ~ Z  Y~ cos y(x,--xj)+~ u(~x,) (1) 

on a periodically bounded line of length L, where y = 2~/L. The potential 
~b consists of a repulsive nearest neighbor potential ~b0 necessary for ther- 
modynamic stability, and an attractive cosinusoidal potential of range L 
between all particles, with amplitude varying as 1/L to allow for a well- 
defined thermodynamic limit. There is in addition an external potential 
u(yx), similarly scaled. Since the interaction is itself size dependent, we will 
have to avoid thermodynamic identities involving volume derivatives. 

A classical canonical equilibrium ensemble is defined via the weight 
w(x,,..., xN) 

= Wo(Xl,...,xu) exp[~flA ~ cosy(xi--xj)]expI--fi ~ u(~xi) ] (2) 

where fl denotes reciprocal temperature. Since the long-range interaction 

cos T(xi- x;)= cos 7xi + sin 7x~ (3) 
i,j 

depends only upon the combinations ~ cos 7xi and ~2 sin yx~, it makes 
sense to treat these combinations separately. They can be extracted either 
via 6-functions or--since they occur quadratically in the ene rgy lv ia  
suitable Gaussians. To implement the latter approach, we introduce the 
decomposition of unity 

c o s  

x exp q, + ~ sin 7xi = 1 (4) 

so that Eq. (2) becomes (6) 

W(X 1 ..... XN) 

flA/L rc , I A ( 2  ] - ~ jjaqcdq, exp - f l ~  qr 

u,,xi,]}) x(exp{-f l ILq~cos,xi+-s 

X W0(X 1 ..... XN) (5 )  
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Our system has now been reinterpreted as one with N +  2 coordinates, N 
particles interacting via nearest neighbor repulsive cores, and under the 
influence of a true external field u(Tx), which we control, as well as 

Vq(TX) = A (q~ cos 7x + qs sin 7x) (6) 

which is controlled by the two mode coordinates q~. and qs. The latter in 
turn contribute quadratically and independently to the energy of the 
extended system. This kind of transformation is in fact a special case of the 
more general Kac-Siegert transformation (4) which can be carried out for 
any system with appended negative-definite pair interaction. 

Rescaling the mode coordinates, qc -~ Lq~., qs ~ Lqs, we can now write 
the grand partition function for our system as 

flAL dqs {exp (q2 _ 

where 

1 
exp(fiN#) . . . . .  dxu Wo(X, ~-a~O[#--U--Uq]:~ N IV] f "f dX1 ,...~ XN) 

U - -  V q ]  

x e x p [ - f l A ( q c ~ c o s 7 x i + q , ~ s i n T x i ) l  

x exp [ - f l  ~ u(Txi) 1 (8) 

In the thermodynamic limit with the ranges of both trigonometric and 
external potentials going to infinity with the size of the system, we can 
work in the local thermodynamic approximation (see, e.g., ref. 6) 

~o[#-  U- Vq] =exp [ fl f Po(#- U(TX)- Vq(Tx)) dx ] (9) 

where Po(#) is the pressure of the bulk core system. Defining O=yx, we 
now have for the grand partition function 

~ E # - u ] = - ~ - f f d q ~ d q s e x p  - -~--(q~ + q~) 

xexp ~-s AsinO-u(O)]dO (10) 
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which one can regard as a partition function in mode space, with effective 
mode Hamiltonian given by 

H~u( qc, s~) 

= L (q2_ + q s ) -  2u 
7 

Po(# - q,A cos 0 - qua sin 0 - u(O)) dO I 

(11) 

Here we can imagine that the thermodynamic limit is being taken in the 
sense of Kac and Hemmer: the volume of the system in 0 space remains 
fixed, but the particle size 2ua/L goes to zero, while 7n(0/7) -~ n(O) becomes 
the scaled particle density, the volume of particles per unit volume 
remaining fixed as well. 

When it is necessary to be explicit, we will choose Po in the simplest 
possible way consistent with thermodynamic stability and appropriate 
limiting behavior in low-density and close-packing limits. Thus, we mimic 
the ideal lattice gas and write 

flPo = - �89  (12) 

where a is the core size and n the number density. For  this equation of 
state, all thermodynamic variables have simple algebraic expressions in 
terms of all others. In particular, it is easily seen that 

1 
fiPo(#) = ~ ln(1 + ae ~ )  

P~)(#) = no(#) = e~/(1 + ae ~ )  (13) 

~n o fie B~, 
e~(#)  = no ~ o  (#) (1 + ae~") 2 

3. U N I F O R M  FLUID 

Let us start by specializing to the case of zero external field. Then (on 
rotating 0), Eq. (11) becomes a function of Q = 2 2 1/2 ( q c+q s )  alone, 

H e f t ( u  ) ----- - L P ( Q )  

A 2 1 r~ (14) 
P ( Q ) = - - ~ Q  + ~ j _  P o ( # - Q A c o s O )  dO 
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In the thermodynamic limit L ~ 0% we will thus have for the equation of 
state 

P = lim 1 L ~  ~ l n  

= m a x  P(Q) 
O 

flAL I e~r*'(~ dQ) 
2~ 

(15) 

The properties of 

f ( Q ) = ~ - ,~ Po(# + QA cos 0) dO (16) 

are crucial. In particular, we note that 

f ' (Q) = ~ no(# + QA cos 0) cos 0 dO 

A f~/2 
= 2-~ ~-~/2 [no(# + QA cos 0) - no(# - QA cos 0)] cos 0 dO >~ 0 

(17) 

f , ,(Q)= ~___z f2 n'o(# + QA cos O) cos2 O dO>'O 
l r  

the inequalities depending only upon monotonicity of no(#). Thus, for 
0 <~ Q < 0% f ' (Q) is a positive, monotonically increasing function of Q, 
linear with slope f " ( 0 ) =  �89 at small Q, and reaching the constant 
value f ' ( o o ) =  A/2a at close-packing density ncp = 1/a. 

Since P ' ( 0 ) =  0, there is always a stationary value of P(Q) at Q = 0. 
However, if P"(O)=-A + �89 this is a minimum, and since 
P ( o o ) = - 0 %  there will be an absolute maximum at some Q r  For  
reasons to be seen later, we refer to Q r 0 as the two-phase case: 

two-phase: n;(#) > 2/A 

P = P(Q) where f ' (Q) = AQ 
(18) 

If P"(0) < 0, Q = 0 is a maximum, and if an absolute maximum, we have 
the one-phase case in which 0 = 0: 

one-phase: n;(#) < 2/A 
(19) 

P(Q) < P(O), P = P(O) = Po(P) 

Here, uniformity is so stable against fluctuations that the cosinusoidal 
interaction simply cancels out in all thermodynamic energies. 
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However, even if n ; (# )<2 /A,  Q = 0  need not be an absolute maxi- 
mum. To see how this may come about, we need only examine the putative 
transition line region, i.e., that in the vicinity of P"(0)=0 .  Expanding 
about 0 = 0, we have 

Q2 I A 2 ] Q43A4 . . . . .  
P(Q)=Po(#)+--~- -A+-~-n'o(#) + - ~ - ~ - n o t # ) +  ... (20) 

Clearly, if n~'(#) > 0 [indeed n~'(#) =/13(1 - aer + ae~) 4 for the 
model (13)], then Q = 0  will not be the absolute maximum when 
n'o(p) = 2/A, and hence in some region of n ; ( # ) <  2/A as well. Of course, 
even if ng ' (#)< 0, ~)= 0 need not be the absolute maximum--the phase 
diagram is capable of some complexity. But it is not hard to show, e.g., for 
(12), that at sufficiently high temperature, P(Q) of (14) necessarily satisfies 
P(Q) < P(0) for Q r 0, allowing only a one-phase state. 

4. A P P L I E D  E X T E R N A L  F I E L D  

The thermodynamic behavior of the model suggests a spatial structure 
which, however, can be evoked only by application of an external field. 
From (10), and with the notation of (11), the resulting density is then 

n(O) -- ~ ~ In ~ [ #  -- u] 
fl au(0) 

flAL f f  
= 2zt dq~ dqs no(# - q~A cos 0 - q,A sin 0 - u(O)) 

x exp[-flHe~(q~, qs)] /~[# - u] (21) 

A cosinusoidal potential 

u(O) = --gA cos 0 (22) 

is particularly easy to incorporate into our discussion, and will be quite 
sufficient for our purposes. Letting L ~ o% Eq. (21) then tells us that 

n(O) = n0(#-- A(O c - g) cos O--Agls sin 0) 

at maximum 

1 A -2  -2  
P(qc, qs)= - L  Hefr(0c' q )=  --~- (qc + qs) 

1 
+ ~ ~ f_~ e0(# + l-(qc - g)2 + ~ ]  1/2 A cos ip) d$ (23) 
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The zero-field maximum point Q of (15) now attains direct physical 
meaning: the stationary pair (~ ,  qs) is determined by 

0 =  - q c +  
~]~.- g 1 

[ - ( I~C -  g ) 2  + 02-]1/2 2~ 

f 
ro 

X no(# + - 2 -2 1/2 [ ( q c - g )  + q s ]  A cos 0) cos O dO 
7~ 

0 =  -qs+ [ - ( q c -  g ) 2  ..~ -2  1/2 q, ] 2z~ 

f 
ro 

x n o ( #  _]_ - 2 -2  1/2 @) c o s  @ d@ [(qc-g) + q , ]  Acos 
7C 

(24) 

readily seen to be equivalent to 

cTs = 0, ~c = sgn(Oc- g) ~-~ no(#+[~tc-g[Acos~p)costpdtp (25) 

Hence in the limit g ~ 0, the profile is stabilized at 

n(O) = no(# - QA sgn(g) cos 0) (26) 

where 

c~ s = 0, tic = - Q  sgn(g) 

_ 1 f~ 
Q=27 n~176176 

- - g  

0 is precisely that which maximizes (15). The signs used in (26) arise from 
the requirement that the Jacobian matrix of (24) at qs = 0 be negative at a 
maximum: 

- 1 + ~  f~ no(#+0A cos ~,) o 

j =  x COS 2 ~t dO 

1 1 f~ 
0 - 1 q- [~]c_ gl ~--s ~ no(#+QAcost)) 

x cos q? dO 

(27) 
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Here, by virtue of (25), 

g 
J22 - _ (28) q c . - g  

whose negativity requires clc/g < 1, and thereby from (24), Clc/g < 0 as well. 
The "one-phase, two-phase" terminology thus appears meaningful. If 

the g = 0 maximum occurs at Q =  0, then the system becomes uniform, 
n(O)=no(l~) when g approaches zero, the cosinusoidal internal forces 
averaging out completely. On the other hand, if Q > 0, then in the g --, 0 + 
limit, a varying density profile results, a broken symmetry which may be 
regarded as representing two phases with a very broad interface. Indeed, 
the locations of the phases interchange if g ~ 0 instead. 

5. L A R G E - F L U C T U A T I O N  R E G I O N S  

The continued stabilization of the two-phase profile as g--, 0 is a 
limiting result, L ~ oo already having been taken. It is clear that as g --, 0 
with Q # 0, the vanishing of J22 of (2.8) will produce an arbitrarily large 
fluctuation in q,, eventually exceeding any finite value of L. Indeed, it is a 
comparison with L that is relevant to capillary wave analogies, since the 
thickness of the "intrinsic interface" in this model is measured by L. 
A strong hint as to how to proceed under these circumstances is given by 
(14), where we see that at g =  O, He~ depends only upon Q, so that in (21), 
now appearing as 

flAL FF 
n(O) = n = ~ I [  Q dQ d(~ no(# - QA cos(0 - ~b)) 

d d  

x exp [ - f lHc~(Q)]/Z[p ] (29) 

the conjugate angle ~b=tan l qs/q c is simply integrated out. It is the 
variable q~, then, which is free in the g = 0 limit at finite L and which there- 
fore must be recognized as the appropriate variable in this regime. 

How, then, are the variable ~b and associated order parameter Q to be 
recognized ab initio? The key, of course, is to be found in the g ~ 0 limit, 
where Q is independent of how the limit is approached, whereas q; is totally 
labile. Here, since only two mode amplitudes are in question, it suffices to 
apply 

u(O) = g(cos ~ cos 0 + sin e sin 0) (30) 
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the parameter  e allowing for the full roster of fundamental  wavelength 
applied potentials of amplitude g. As g--* 0 +, we find as in (26) that 

t ic= q cos e, c]s= q sin ~ (31) 

where q is fixed by thermodynamics.  Thus, 

OQ/O~ = O, O~/O~ = 1 (32) 

determine the natural  coordinates O =  (q~ _2~1/2 1 + ~ s )  , ~ = t a n  c],/~c. Exten- 
sion to multiple modes is in principle direct, and will be treated in work to 
follow. 
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